

Fig. 1. The structure of the title compound $(c=4 \cdot 238 \AA)$.
are two Cl atoms from another double chain that are weakly bonded to the metal atom [3.25 (1), 3.08 (1) $\AA]$. The structure can be compared to that of dimeric $\mathrm{HgCl}_{2} L$ ($L=$ pyridine 1 -oxide) (Sawitzki \& von Schnering, 1974) in which the Hg atom is strongly bonded to two Cl atoms $\{2 \cdot 316$ (15), $2 \cdot 339$ (15) \AA Á , weakly bonded to two others [3.185 (18), 3.318 (17) \AA] and bridged to the adjacent Hg by O atoms of two
ligands $[\mathrm{Hg}-\mathrm{O} 2.59$ (5), 2.60 (5) \AA]. In this structure the Hg environment is also distorted octahedral with the strongly bonded Cl atoms in trans positions.

The poor quality of the data precludes any discussion of the ligand dimensions but from the torsion angles it is clear that the pyridine ring is approximately perpendicular to the planar $C(7)-C(8)-C(9)-C\left(8^{\text {ii }}\right)-$ C (9ii) linkage.

Apart from the two weak $\mathrm{Hg} \cdots \mathrm{Cl}$ contacts already mentioned, there are no other distances significantly less than the sum of the van der Waals radii between atoms in the double chains.

References

Alshaikh-Kadir, K. \& Holt, P. (1976). Makromol. Chem. 177, 311-317.
Alshaikh-Kadir, K. \& Holt, P. (1977). Makromol. Chem. 178, 329-335.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Sawitzki, G. \& von Schnering, H. G. (1974). Chem. Ber. 107, 3266-3270.
Sheldrick, G. M. (1976). SHELX system of programs for crystal structure determination. Univ. of Cambridge, England.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1978). B34, 941-943

cis-Dichloro(ammine)(dimethyl sulphoxide)platinum(II)

By R. Melanson and F. D. Rochon
Département de Chimie, Université du Québec à Montréal, CP 8888, Montréal, Québec H3C 3P8, Canada

(Received 4 October 1977; accepted 15 November 1977)

Abstract. $\mathrm{PtCl}_{2} \mathrm{C}_{2} \mathrm{H}_{9} \mathrm{NSO}, \quad M_{r}=361 \cdot 16$, orthorhombic, $P 2_{12} 2_{1} 2_{1}, a=8.889$ (4), $b=9.042$ (6), $c=$ 10.475 (8) $\AA, Z=4, V=841.9(9) \AA^{3}, D_{x}=2.849$, $D_{m}=2.84(1) \mathrm{g} \mathrm{cm}^{-3}$ (flotation); $\lambda(\mathrm{Mo} \mathrm{K} K$) $=0.71069$ $\AA, \mu\left(\right.$ Mo $K(r)=183.10 \mathrm{~cm}^{-1}, t=22^{\circ} \mathrm{C}$. Positional and anisotropic thermal parameters were refined by fullmatrix least-squares calculations to $R=0.036$ and R_{w} $=0.029$. The coordination around the Pt atom is planar. The compound has the cis configuration. The $\mathrm{Pt}-\mathrm{Cl}$ bond which is trans to the dimethyl sulphoxide molecule seems slightly longer $(2 \cdot 321 \AA)$ than the cis $\mathrm{Pt}-\mathrm{Cl}$ bond ($2.297 \AA$).

Introduction. Recently, we have studied the isomerization of complexes of the type $[\operatorname{Pt}(\mathrm{DMSO})(L)$ Cl_{2}] (where $L=$ nucleoside, NH_{3} or pyridine, and DMSO $=$ dimethyl sulphoxide). In order to confirm the configurations of the isomers, some typical compounds were studied by X-ray diffraction. Here we report the crystal structure of cis-[Pt(DMSO) $\left.\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]$.
cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{DMSO}) \mathrm{Cl}_{2}\right]$ was prepared from the isomerization of the trans isomer as already described by Kong, Iyamuremye \& Rochon (1976). A set of precession photographs indicated that the crystal belongs to the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$.

The intensity data were collected from a crystal 0.08 $\times 0.42 \times 0.06 \mathrm{~mm}$ elongated along the \mathbf{b} direction on a Syntex $P \overline{1}$ diffractometer using graphite-monochromatized Mo $K_{\text {It }}$ radiation. 1458 independent reflections were measured in the region of $2 \theta<60^{\circ}$ by the $2 \theta / \theta$ scan technique at a variable speed (24 to 1° $\min ^{-1}$). Most of the reflections were measured at a speed of $1^{\circ} \mathrm{min}^{-1}$. The background to scan time ratio was 0.40 . The 1172 reflections for which the intensity was greater than $2 \cdot 5 \sigma(I)$ were considered as observed. The standard deviation $\sigma(I)$ was calculated as already described (Melanson \& Rochon, 1975). An absorption correction based on the equation of the crystal faces was applied to all the reflections. The data were then corrected for the Lorentz and polarization effects. The scattering factors were those of Cromer \& Waber (1965) and the anomalous-dispersions terms (Cromer, 1965) of Pt, Cl and S were included in the calculations.

The position of the Pt atom was easily located from the three-dimensional Patterson map. The positions of all other atoms except H were obtained by structurefactor and Fourier-map calculations. Individual weights, w, according to the equation $1 / w=a+b F_{g}+$ $c F_{o}^{2}$, were calculated. The constants in the equation were adjusted to make the distribution of $w|\Delta F|^{2}$ practically constant with respect to $\left|F_{0}\right|$ and $\sin \theta / \lambda$ (a $=30.0, b=-0.353$ and $c=0.0011$). An isotropic secondary-extinction correction (Coppens \& Hamilton, 1970) was also introduced. The H atoms on the methyl
and ammine groups could not be localized. The refinement of the scale factor, the coordinates and anisotropic temperature factors of all nonhydrogen atoms converged to a conventional $R=\Sigma\left(\left|F_{o}\right|-\left|F_{c}\right|\right) /\left|F_{o}\right|$ of 0.036 and a weighted residual $R_{4}=\mid \Sigma w\left(\left|F_{o}\right|-\right.$ $\left.\left.\left|F_{c}\right|\right)^{2} / \Sigma w\left|F_{o}\right|^{2}\right]^{1 / 2}$ of 0.029 .* The refined parameters are given in Table 1.

The calculations were carried out with a CDC 6400 computer and the programs used have been described elsewhere (Melanson \& Rochon, 1975).

Discussion. A stereoscopic view of the molecule is shown in Fig. 1. The bond lengths and angles are given in Table 2. Two Cl , one S and one N atom form the square-planar coordination expected for Pt^{11} complexes. The weighted best plane was calculated through the five atoms. The deviations from this plane are: Pt $-0.0005(6), \mathrm{Cl}(1) \quad 0.018(5), \mathrm{Cl}(2) \quad 0.000(5), \mathrm{S}$ 0.011 (4) and $\mathrm{N}-0.003$ (15) A. The angles around the Pt atom are close to the expected 90 and 180°.

The compound has the cis configuration. The two $\mathrm{Pt}-\mathrm{Cl}$ bond lengths [cis (related to DMSO) $\mathrm{Pt}-\mathrm{Cl}=$ $2.297 \AA$, trans $\mathrm{Pt}-\mathrm{Cl}=2.321 \AA$] agree well with the

[^0]Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$
Table 1. Final atomic parameters $\left(\times 10^{4}\right)$
Estimated standard deviations are given in parentheses.

	x	y	z
	y	y	
Pt	$-1137.3(6)$	$4880 \cdot 7(7)$	$1250 \cdot 1(6)$
$\mathrm{Cl}(1)$	$-3543(5)$	$4265(6)$	$1928(5)$
$\mathrm{Cl}(2)$	$-925(7)$	$6711(6)$	$2760(5)$
S	$1111(5)$	$5426(4)$	$548(3)$
O	$1711(13)$	$4383(13)$	$-424(11)$
N	$-1323(19)$	$3261(16)$	$-82(15)$
$\mathrm{C}(1)$	$1128(32)$	$7238(19)$	$-99(22)$
$\mathrm{C}(2)$	$2471(17)$	$5597(20)$	$1778(17)$

Fig. 1. Stereoscopic view of a molecule of cis- $\left[\mathrm{Pt}(\mathrm{DMSO})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2} \mid\right.$.

Fig. 2. Packing in the cis- $\left|\mathrm{Pt}(\mathrm{DMSO})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right|$ crystal.
values found in $\mathrm{K}\left[\mathrm{Pt}(\mathrm{DMSO}) \mathrm{Cl}_{3}\right]$ (cis $\mathrm{Pt}-\mathrm{Cl}=2 \cdot 30$ \AA, trans $\mathrm{Pt}-\mathrm{Cl}=2.32 \AA$) (Melanson, Hubert \& Rochon, 1976), cis-[Pt(DMSO) $\left.{ }_{2} \mathrm{Cl}_{2}\right](2 \cdot 31 \AA$, Melanson \& Rochon, 1975), trans- $\{\mathrm{Pt} \mid S$-bis(isopropyl) sulphoxidel(N-1-methylcytosine) $\left.\mathrm{Cl}_{2}\right\}$ (2.29 and 2.30 \AA, Lock, Speranzini \& Powell, 1976), cis-[Pt(DMSO)-(2-picoline) Cl_{2} I (cis $\mathrm{Pt}-\mathrm{Cl}=2.288 \AA$ A, trans $\mathrm{Pt}-\mathrm{Cl}=$ $2.307 \AA$, Melanson \& Rochon, 1977) and trans-$\left[\mathrm{Pt}(\mathrm{DMSO})\left(2\right.\right.$-picoline) $\left.\mathrm{Cl}_{2}\right]$ (cis $\mathrm{Pt}-\mathrm{Cl}=2.282$ and $2.295 \AA$, Melanson \& Rochon, 1978). DMSO has a relatively high trans influence (Kukushkin, Stetsenko, Strelin \& Duibanova, 1972; Kukushkin \& Vyaz'menskii, 1970). In the above Pt dimethyl sulphoxide complexes, slightly higher values have been observed for bonds trans to DMSO (2.31-2.32 £) compared with the cis bonds ($2 \cdot 28-2 \cdot 30 \AA$), but, at the moment, we do not know if this is really significant.
The $\mathrm{Pt}-\mathrm{S}$ bond ($2.186 \AA$) is slightly shorter than the values (2.244 and $2.229 \AA$) found for cis$\left\lfloor\mathrm{Pt}(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}\right\rfloor$ (Melanson \& Rochon, 1975), and value ($2.232 \AA$) found in trans- $\left\{\mathrm{PtCl}_{2}[S\right.$-bis(isopropyl) sulphoxidel(N-1-methylcytosine) (Lock, Speranzini \& Powell, 1976) and the value of $2.212 \AA$ found in trans-$\left[\mathrm{Pt}(\mathrm{DMSO})\left(2\right.\right.$-picoline) $\left.\mathrm{Cl}_{2}\right]$ (Melanson \& Rochon, 1978). It is close to the value of $2 \cdot 193 \AA$ found in $\mathrm{K}\left[\mathrm{Pt}(\mathrm{DMSO}) \mathrm{Cl}_{3}\right]$ (Melanson, Hubert \& Rochon, 1976) and the value of $2.200 \AA$ found in cis-$\left[\mathrm{Pt}(\mathrm{DMSO})\left(2\right.\right.$-picoline) $\mathrm{Cl}_{2} \mid$ (Melanson \& Rochon, 1977). The S atom has an approximate tetrahedral environment with angles ranging from 101 to 114°. The distances and angles found in the DMSO ligand agree well with the equivalent values found in DMSO itself (Viswamitra \& Kannan, 1966; Thomas, Shoemaker \& Eriks, 1966) and in the Pt sulphoxide complexes mentioned above.

Fig. 2 illustrates the packing in the cis-[$\mathrm{Pt}(\mathrm{DMSO})$ $\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}$ I crystal. It consists of layers of molecules parallel to the $a c$ plane.

The environment of the N atom was closely examined for possible hydrogen bonding. Two short intermolecular contacts with favourable angles seem to
indicate that hydrogen bonding is important in the crystal. The $\mathrm{N}|x, y, z| \cdots \mathrm{O}\left|x-\frac{1}{2}, \frac{1}{2}-y,-z\right|$ distance is 3.01 (2) \AA and the $\mathrm{Pt}-\mathrm{N} \cdots \mathrm{O}$ angle is 119.9 (7) ${ }^{\circ}$. The second hydrogen bond seems to involve the NH_{3} molecule with $\mathrm{Cl}(2)$. The $\mathrm{N}|x, y, z| \cdots \mathrm{Cl}(2) \left\lvert\,-\frac{1}{2}-x\right.$, $\left.1-y, \quad z-\frac{1}{2}\right]$ distance is 3.33 (2) \AA and the $\mathrm{Pt}-\mathrm{N} \cdots \mathrm{Cl}(2)$ angle is $121.4(6)^{\circ}$. There is no intramolecular hydrogen bonding.

The authors are grateful to the National Research Council of Canada and the Cancer Research Society Inc. for financial support, to Dr P. C. Kong for the synthesis of the analyzed compound and to Johnson Matthey \& Co. Ltd for the loan of potassium chloroplatinite.

References

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104109.

Kong, P. C., Iamuremye, D. \& Rochon, F. D. (1976). Can. J. Chem. 54, 3224-3226.
Kukushín, Yu. N., Stetsenko, A. I., Strelin, S. B. \& Duibanova, V. G. (1972). Russ. J. Inorg. Chem. 17, 561-563.
Kukushioin, Yu. N. \& Vyaz'menskii, Yu. E. (1970). Russ. J. Inorg. Chem. 15, 248-251.

Lock, C. J. L., Speranzini, R. A. \& Powell, J. (1976). Can. J. Chem. 54, 53-58.
Melanson, R., Hubert, J. \& Rochon, F. D. (1976). Acta Cryst. B32, 1914-1916.
Melanson, R. \& Rochon, F. D. (1975). Can. J. Chem. 53, 2371-2374.
Melanson, R. \& Rochon, F. D. (1977). Acta Cryst. B33, 3571-3573.
Melanson, R. \& Rochon, F. D. (1978). Acta Cryst. B34, In the press.
Thomas, R., Shoemaker, C. B. \& Eriks, K. (1966). Acta Crist. 21. 12-20.
Visw..'itra, M. A. \& Kannan, K. K. (1966). Nature (Lonaun), `99, 1016-1017.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British I ibrary Lending Division as Supplementary Publication No. SUP 33183 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

